T4, imaging: Techniques and Basis for Image Contrast
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Introduction

Nuclear spin relaxation plays a key role in imparting image contrast in magnetic resonance
imaging (MRI). Traditionally, T1 (spin-lattice relaxation) and T, (spin-spin relaxation)
relaxation times and magnetization transfer (MT) contrast are exploited to better visualize a
given tissue in a specific pathology. In recent years, T+, (spin-lattice relaxation in the rotating
frame) is also utilized to study tissue specific properties. In this presentation, first we
describe the T+, relaxation time and elicit its differences from the traditional relaxation times.
Second, we discuss methods for T4, measurement, including types of imaging sequences
used. Third, we present its role in studying collagen rich tissues such as cartilage and
intervertebral disc. Last, we demonstrate some specific biomedical applications where Ty,
shows promise for characterizing tissue integrity. In what follows, a brief background on the
aforementioned topics is presented.

T1, Tz, MT and T1p

In NMR, the spin dynamical information is contained in the spectral density functions
associated with the spin-lattice relaxation in the laboratory or rotating frame (1-4). Depending
upon the method used, the experiment may be simultaneously sensitive to more than one
time scale. As is well known, T relaxation is sensitive to the spin motional processes and
hence spectral densities that are at or around the Larmor precession frequency. This means
that by performing T4 measurements at varying B, field strengths, it is possible to study spin
interaction/motional processes occurring at those frequencies (5,6). For high-resolution
magnetic resonance, these frequencies are typically 10-500 MHz. Unfortunately, to measure
very low frequency components (100 Hz to few KHz) measurements are performed at very
low magnetic field strengths. This creates two problems: (1) at low fields the image signal to
noise ratio (SNR) is poor and (2) these low field scanners are not readily available and hence
this is not a viable alternative. This is where T4, plays a crucial role. On the other hand, T+,
enables the measurement of low frequency processes while performing the imaging
experiments at any currently available clinical MRI field strengths (7,8).

In a T4, experiment, the spin magnetization is first flipped into the transverse plane (in the
rotating frame) by a 90° pulse. Then a long, low powered (B+) RF pulse, referred to as spin-
lock (SL) pulse, is applied parallel to the magnetization. The magnetization nutates around
the applied spin lock (B1) field. The magnetization undergoes relaxation in the presence of
the spin-lock field in the rotating frame, a situation similar to the rotation of longitudinal
magnetization around the Bo field in the laboratory frame. This spin-locked magnetization
will relax with a time constant T4, for the duration of the spin-locking pulse (TSL). In the
rotating frame, the spin lock field B4 plays the same role of Bo as in the laboratory frame. To
measure T, dispersion one must perform measurements at different Bo fields, a time
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intensive process. Whereas T,, dispersion can be measured simply by varying B, field
amplitude at a constant Bo field using readily available hardware! The “T4, -dispersion” curve
obtained in this case is governed by the spectral density components of the sample that in
the neighborhood of v4 (2rnv1=yB1=w1), typically in the range of few Hz to several KHz.

T4, phenomenon and associated relaxation theory was first introduced in the studies of solid-
state materials (9,10)(9-10). Since then the technique has been utilized in solution state
NMR to study protein dynamics and in biological tissues to investigate pathophysiology in
different types of tissues (2,11).

T, relaxation processes produce dispersion or uncertainty in the energy gap between spin
states. T, processes do not change the energy of the spin system, but they instead
contribute to de-phasing of transverse magnetization.

T4, is related to T4 and T, as follows: 1) as the frequency of the spin-locking pulse, w1,
approaches zero, T4, approaches T»; and 2) as ws approaches the Larmor frequency, wo, T4,
approaches T4. For liquids that satisfy extreme narrowing conditions (i.e., ®,t.<<1, where 1.
is the rotational correlation time), T, is independent of ws and, moreover, T1=T,=T,. For
solids and many biological tissues one finds that T>>T,>T1 (4,5).

In biological tissues, the MT mechanism involves exchange modulated dipolar interaction
mediated cross relaxation between bound/restricted pool of water with that of free/mobile
pool of water. In cartilage, it has been shown that the magnetization transfer effect is
predominantly due to the collagen component and there is only a very small contribution from
PG (12). The bound water residence time on the collagen is in the order of microseconds
leading to a line width of several hundred KHz. In fact, the bound pool of water in cartilage
has a T, of ~10 us and results in ~100 KHz line width. Upon off-resonance saturation these
spins exchange with bulk water, which results in the reduction in the amplitude of free water
signal.

Measurement of T+,

In a typical T+, MRI experiment, TSL is incremented while the amplitude of SL pulse (v1=0.1
to few KHz) is fixed. Magnetization measured as function of TSL duration is fitted to an
exponentially decaying function to compute T4, at the w of interest. In imaging applications, it
is often more convenient to spin-lock prepare the magnetization and then store it along the
longitudinal axis with a —90° RF pulse and recall it by a suitable imaging readout sequence.
A crusher gradient is then applied to dephase any residual transverse magnetization (7,8).

Mechanisms that contribute to T4, relaxation

In biological tissues, several types of motional processes/interactions contribute to T,
relaxation (4). Depending on the tissue, more than one relaxation mechanism may be
operative simultaneously, but with different relative contributions. In general, predominant
contributions in tissues are chemical exchange, dipole-dipole interactions, spin-spin coupling,
diffusion and slow rotational motions of spins on large macromolecules (4-6,13).



T4, MRI of collagen rich tissues

In collagen rich tissues such as cartilage, the primary mechanisms that contribute to T4, are
from chemical exchange and dipole-dipole interactions, which in turn contribute to image,
contrast and give a handle to compute changes in the matrix macromolecular content and
structure.

In cartilage, the dipolar interaction of water protons on highly oriented collagen significantly
broadens the water proton line. Due to spatial variations in collagen orientation, the dipolar
interaction causes the so-called tri-laminar appearance in cartilage (14-17). Because of this
property, T> weighted images are prone to the “magic angle effect” and this enables the
detection of structural or compositional changes in collagen. The low frequency exchange of
—OH and —NH protons on the Glycosaminoglycans (GAG) chains of aggrecan with bulk water
protons alter both T, and T,, relaxation times. However, the dominant dipolar interaction
masks smaller changes in T, relaxation time caused by the exchange mechanism. However,
the spin locking in the T,, experiment refocuses or attenuates/minimizes the dipolar
interaction and makes the T, relaxation sensitive to other relaxation mechanisms such as
low frequency proton exchange. This leads to an enhanced dynamic range of T4, compared
to T, (14,15). For the same reason, in T., weighted images the magic angle effect is
minimized. This enables the detection of changes in other macromolecular (e.g. aggrecan)
composition in cartilage with high degree of accuracy. Besides this, T4, MRI has other
advantages such as minimizing susceptibility effects, refocusing chemical shifts and
attenuating effects due to diffusion through inhomogeneous fields (7,18-21).

T4, MRI has been performed on bovine cartilage subjected to enzymatic degradation (22-24),
human osteoarthritic cartilage specimens (25), animal models of osteoarthritis (OA) (26) and
healthy as well OA subjects and demonstrated its potential in characterizing early OA and
hence cartilage integrity (27-36). Recently, T1, MRI of intervertebral disc has been performed
and its potential of detecting disc degeneration is demonstrated (37,38).
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